General Information

The School of Ocean and Earth Science and Technology (SOEST) was established in 1988. It combines and integrates the Departments of Geology and Geophysics, Meteorology, Ocean and Resources Engineering, and Oceanography, as well as the Hawai‘i Institute of Geophysics and Planetology, the Hawai‘i Institute of Marine Biology, and the Hawai‘i Natural Energy Institute. The Sea Grant and Space Grant College Programs, the Hawai‘i Undersea Research Laboratory, and the Joint Institute for Marine and Atmospheric Research, all jointly supported by state and federal funds, are also part of SOEST. In 1997, the International Pacific Research Center was established in SOEST under the U.S.-Japan Common Agenda. The center is jointly supported by the state, Japanese, and federal funds.

Although the Department of Ocean and Resources Engineering offers several undergraduate courses, baccalaureate degrees are not offered in this area. The Department of Oceanography offers the BS in global environmental science. Baccalaureate degree programs are offered in the Department of Geology and Geophysics and the Department of Meteorology. Those with long-range plans for graduate work in oceanography or ocean and resources engineering should prepare themselves with an undergraduate course of study that will satisfy the entry requirements for admission to these graduate programs. Information on entrance and degree requirements for all SOEST graduate programs (MS and PhD in geology and geophysics, meteorology, ocean and resources engineering, and oceanography) is in this Catalog. Candidates for advanced degrees and the graduate certificate program apply through the Graduate Division of the UH. The school has developed a number of interdisciplinary courses at both the undergraduate and the graduate levels, which are listed under OEST within the “Courses” section of the Catalog.

Mission

The mission of SOEST is to make UH a leading center in ocean and earth science and technology. Scientists of SOEST intend to understand the subtle and complex interrelations of the seas, the atmosphere, and the Earth in order to learn how to preserve the quality of our lives and to bring to Hawai‘i an enrichment of intellect and culture along with technological advances well suited to the needs of these islands. To that end, the objectives of SOEST are as follows:

1. Enhance educational opportunities in ocean and earth science and technology for the people of Hawai‘i, the nation, and the Pacific Basin;
2. Accelerate the growth of UH to preeminence in research and development in ocean and earth science and technology;
3. Build the strength of UH for public service and outreach in the Pacific Basin; and
4. Provide a foundation for economic interaction and development of marine-related industries within the state of Hawai‘i.
Degrees

Bachelor’s Degrees: BA in geology, BS in geology and geophysics, BS in meteorology, BS in global environmental science

Master’s Degrees: MS in geology and geophysics, MS in meteorology, MS in ocean and resources engineering, MS in oceanography

Doctoral Degrees: PhD in geology and geophysics, PhD in meteorology, PhD in ocean and resources engineering, PhD in oceanography

Advising

For general information about the school and its programs, contact the associate dean’s office at POST 802, 1680 East-West Road; tel. (808) 956-9109 or Leona Anthony, Student Services Specialist at (808) 956-8763.

For information on specific degree programs, contact the appropriate departments.

Undergraduate Programs

Candidates for the BA degree in geology, the BS degree in geology and geophysics, the BS degree in meteorology, and the BS degree in global environmental science, apply through the undergraduate Admissions Office.

School Requirements

To be entitled to a bachelor’s degree offered by the school, students must fulfill these requirements:
1. Basic course work as specified by their degree programs;
2. Completion of requirements for the major, including presentation of the graduation worksheet to the Student Academic Services Office;
3. Completion of 60 credit hours in non-introductory level courses (i.e., courses numbered 300 and above) or 200-level courses that have an explicit college-level course prerequisite;
4. GPA of 2.0 (C average) for all UH Mānoa registered credits;
5. GPA of 2.0 (C average) for all courses applied to the major requirements;
6. A degree audit at the Student Academic Services Office two semesters preceding the award of the degree; and
7. Application for graduation at the Student Academic Services Office in the semester preceding the award of the degree.

Bachelor of Arts and Bachelor of Science Degrees

Basic Requirements
2. One year of a second language (101 and 102).

Support science requirements from mathematics, chemistry, and physics vary with degree programs. The following are the minimum required courses (consult departmental advisor for further details).

Mathematics
- MATH 241 (BA)
- MATH 242, 242L (BS, geology and geophysics)
- MATH 244 (BS, meteorology; BS global environmental sciences)

Chemistry
- CHEM 161/161L, 162/162L

Physics
- PHYS 151/151L and 152/152L (BA)
- PHYS 170/170L and 272/272L (BS)

Note that introductory chemistry and mathematics courses have placement tests.

Students who have not completed a high school course equivalent to pre-calculus should take MATH 140 during the summer session prior to their first semester. All BA and BS degree candidates should consult with the departmental advisor before registering.

Major Requirements

See appropriate departments for specific major requirements leading to a bachelor of arts or a bachelor of science degree.

Graduate Programs

See appropriate departments for specific major requirements leading to MS and PhD degrees.

Instructional and Research Facilities

Hawai‘i Institute of Geophysics and Planetology

The Hawai‘i Institute of Geophysics and Planetology (HIGP) conducts geological, geochemical, geophysical, oceanographic acoustic, and atmospheric research, as well as remote sensing research, in Earth, space, and marine sciences. Programs embrace research and advanced training in marine geology and geophysics, small satellite development and launch, infrasonic, materials science and high-pressure mineral geophysics, evolution of the Solar System, seismology and solid Earth geophysics, planetary geology, meteoritics, volcanology, rock magnetism, geodetics, and petrology. The institute maintains various specialized facilities in support of its research endeavors and has a number of instrument development programs, including hyperspectral imagers, mass spectrometers, and micro-satellites. HIGP includes the Hawai‘i Space Grant Consortium, which runs a wide variety of education and fellowship programs at the K–12, undergraduate, and professional levels in the form of workforce development and also provides outreach to the Hawai‘i community. HIGP is also the home of the Pacific Regional Planetary Data Center, and maintains several websites for the community, including “Planetary Science Research Discoveries” and the “Hawai‘i MODVOLC Near Real-time Thermal Monitoring of Global Hot-spots.”

Hawai‘i Institute of Marine Biology

The Hawai‘i Institute of Marine Biology (HIMB) was established on the island of Moku O Lo‘e in 1965 when its name was changed from the Hawai‘i Marine Laboratory. The institute is responsible for providing leadership and support for studies in the marine environment, particularly in coral reefs. It provides facilities and services for faculty members, graduate and undergraduate students and visiting scholars for
research and education in marine biology and related topics. The core faculty, plus many from other UH departments, study the life processes of marine organisms including plants, animals, and microbes. Research at HIMB covers a broad range of topics including coral reef biology and ecology, the behavior physiology and sensory systems of marine mammals, tropical aquaculture, the behavior of reef fishes, shark ecology and sensory systems, fish endocrinology, pollution and management of marine ecosystems, coastal biogeochemical processes, fisheries, and bioengineering and genetics.

HIMB is unique in that it has new, modern molecular biology laboratories and immediate access to the reef, Kane‘ohe Bay, and deep ocean waters. It is located on Moku O Lo‘e (Coconut Island) in Kane‘ohe Bay (on the east coast of O‘ahu) providing a unique setting for graduate-level topics courses and field-trip demonstration opportunities. Kane‘ohe Bay is filled with healthy coral reefs. The 24 acre island, located within a 30 minute drive distance from UH Mānoa campus, is surrounded by a 64 acre coral reef dedicated to scientific research. Facilities at the marine laboratory include research vessels and skiffs, protected harbors, a pelagic fish laboratory; Hawaiian fish ponds, aquaria and tanks; a flow-through seawater system; remote environmental monitoring capabilities; reef micromodel systems; a wide array of computerized analytical and acoustic equipment; a floating marine mammal research complex; a functional genomics facility; and the Barbara Pauley Pagen Library and classrooms.

Hawai‘i Natural Energy Institute

The Hawai‘i Natural Energy Institute (HNEI) was established by the Legislature in 1974 to develop renewable energy resources and technologies to reduce the state’s dependence on fossil fuels. Today, with funding from private industry and state and federal agencies, HNEI conducts basic and applied research on a wide range of topics to address society’s critical energy and environmental problems. Current research includes hydrogen and fuel cells, sea-bed methane hydrates, fuels and high value products derived from biomass and engineered microbial systems, photovoltaics, and batteries and electric vehicles. The institute works closely with the Hawai‘i Department of Business, Economic Development, and Tourism (DBEDT), industry, and federal funding agencies to develop public/private partnerships for the deployment and demonstration of fuel cell and renewable energy technologies.

Hawai‘i Space Grant Consortium

The Hawai‘i Space Grant Consortium is a wide-ranging community educational program supported by the National Aeronautics and Space Administration (NASA) that promotes studies in scientific fields related to space. These fields include astronomy, geology, meteorology, oceanography, mathematics, physics, engineering, computer science, and life sciences. Affiliate campuses are UH–Hilo, all seven community colleges, and the University of Guam. Some of the programs supported by Space Grant include undergraduate fellowship and traineeship programs (approximately 10–20 students per semester are supported); the Future Flight Program for teachers, school students and their parents; teacher workshops; undergraduate remote-sensing class; an undergraduate telescope facility; a CanSat project geared for community college students to create a satellite similar to UH Mānoa’s own CubeSat project; an undergraduate internship program awarded for students to participate in a Science, Technology, Engineering, and Mathematics (STEM) related research at local businesses; and outreach to state and federal agencies related to the use of satellite and aircraft remote-sensing data. A significant goal of the program is to encourage interdisciplinary studies and research, and to train future generations of space scientists and engineers. Students, teachers, and researchers in Hawai‘i are encouraged to contact the UH Mānoa Space Grant office at (808) 956-3138 to learn more about the opportunities.

Hawai‘i Undersea Research Laboratory

The Hawai‘i Undersea Research Laboratory (HURL) was established in 1980 by a cooperative agreement between the National Oceanic and Atmospheric Administration (NOAA) and the UH. HURL is one of six National Undersea Research Centers sponsored by NOAA’s National Undersea Research Program (NURP). HURL operates the Pisces IV and Pisces V research submersibles and the RCV-150 remotely-operated vehicle to conduct marine research to oceanic depths of 2,000 meters. These underwater vehicles are operated from HURL’s dedicated support ship, the 222-foot R/V Ka‘imikai-o-Kanaloa. Extensive data are archived and available to the scientific and academic community for biology, geology and marine chemistry research from submersible dives dating back to 1980. Principal research projects conducted are those aligned with the mission of NOAA.

International Pacific Research Center

The International Pacific Research Center was established in 1997 under the U.S.-Japan Common Agenda for Cooperation in Global Perspective. Its mission is to provide an international, state-of-the-art research environment to improve understanding of the nature and predictability of climate variability in the Asia-Pacific sector, including regional aspects of global environmental change.

Joint Institute for Marine and Atmospheric Research

The Joint Institute for Marine and Atmospheric Research (JIMAR) was created in 1977 through a Memorandum of Understanding between the National Oceanic and Atmospheric Administration (NOAA) and UH Mānoa to conduct research of mutual interest. The principal research interests of JIMAR include equatorial oceanography, tsunamis and other long-period waves, climate, fisheries oceanography, tropical meteorology, and coastal research.
Sea Grant College Program

The University of Hawai'i Sea Grant College Program (UH Sea Grant) supports an innovative program of research, education, and outreach services directed to the improved understanding and stewardship of marine and coastal resources of the state, region, and nation. UH Sea Grant is a partnership of UH, the National Oceanic and Atmospheric Administration and the State of Hawai'i that is facilitated by strong linkages with 32 Sea Grant programs across the nation and affiliations throughout the Pacific.

UH Sea Grant research currently focuses on promoting coastal community sustainability, sustainable aquaculture, marine biotechnology, ecosystem-based use of nearshore resources and habitats, sustainable tourism, coastal water quality, and resilience to natural hazards. Knowledge is disseminated to policy makers, marine agencies, the marine industry, and the general public through UH Sea Grant’s extension faculty, outreach activities and communications program. UH Sea Grant supports educational activities that include K-12 through graduate and postgraduate and professional training. Human resources are built in part through internships, traineeships and fellowships. The overall goal is to develop knowledge and the will to build Hawai'i’s economy and protect its habitats and resources through UH’s excellence and our cultural heritage.

Geology and Geophysics

POST 701
1680 East-West Road
Honolulu, HI 96822
Tel: (808) 956-7640
Fax: (808) 956-5512
E-mail: gg-admissions@hawaii.edu
Web: www.soest.hawaii.edu/asp/GG/index.asp

Faculty

*J. M. Becker, PhD—geophysical fluid dynamics
*P. Cooper, PhD—seismology
*F. K. Duennebier, PhD—seismology, marine geophysical instrumentation
*R. A. Dunn, PhD—marine geophysics
*A. I. El-Kadi, PhD—groundwater hydrology
*J. L. Engels, PhD—marine geology, glacial geomorphology
*C. H. Fletcher, PhD—coastal geology
*L. N. Frazer, PhD— theoretical seismology
*E. J. Gaidos, PhD—geobiology, planetary science
*M. O. Garcia, PhD—igneous petrology, volcanology
*C. R. Glenn, PhD—sedimentology, diagenesis, paleoceanography
H. Gonnermann, PhD—volcanology
*L. Gurioli, PhD—physical volcanology
*J. E. Hammer, PhD—physical volcanology
E. W. Hellebrand, PhD—igneous petrology
*B. F. Houghton, PhD—physical volcanology
*G. T. Ito, PhD—marine geophysics and geodynamics
*K. T. M. Johnson, PhD—geochemistry, petrology, marine geology
*J. J. Mahoney, PhD—geochemistry
*S. J. Martel, PhD—engineering geology, geomechanics
*G. F. Moore, PhD—exploration seismology, tectonics
*B. N. Popp, PhD—isotopic biogeochemistry
*D. Pyle, PhD—geochemistry, petrology
*G. E. Ravizza, PhD—paleoceanography
*S. K. Rowland, PhD—volcanology, Hawaiian geology
*K. H. Rubin, PhD—geochemistry, environmental chemistry, volcanology
*J. M. Sinton, PhD—igneous petrology, marine geology
*S. M. Stanley, PhD—paleobiology, geobiology
*B. Taylor, PhD—plate tectonics, geology of ocean margin basins
*P. Wessel, PhD—marine geophysics

Cooperating Graduate Faculty

T. B. Applegate, PhD—marine geology and geophysics, seafloor mapping and plate tectonics
B. A. Brooks, PhD—geodetic, GPS
E. H. DeCarlo, PhD—marine geochmistry, marine resources
M. H. Edwards, PhD—marine geology and geophysics
S. A. Fagents, PhD—planetary volcanology
L. Flynn, PhD—remote sensing of fires and volcanoes
P. B. Fryer, PhD—marine geology, petrology, tectonics
M. D. Fuller, PhD—paleomagnetism, geomagnetism
M. A. Garcés, PhD—infrasound, wave propagation, volcanology
J. Gillis-Davis, PhD—planetary geosciences, remote sensing
V. E. Hamilton, PhD—planetary geosciences
A. J. Harris, PhD—volcanology, remote sensing
B. R. Hawke, PhD—planetary geosciences
E. Herrero-Bervera, PhD—paleomagnetism, geomagnetism
R. N. Hey, PhD—marine geophysics and tectonics
G. R. Huss, PhD—cosmochemistry, early solar system chronology
B. H. Keating, PhD—paleomagnetism
K. Keil, DrRerNat.—meteorites, planetary geosciences
L. W. Kroenke, PhD—marine geology and geophysics
A. N. Krot, PhD—meteorites, planetary geosciences
B. R. Lienert, PhD—geophysics
P. G. Lucey, PhD—planetary geosciences
F. Mackenzie, PhD—sedimentary geochemistry, sedimentology
M. H. Manghnani, PhD—high-pressure geophysics, mineral physics
F. Martinez, PhD—marine geophysics
F. W. McCoy, PhD—marine geology, sedimentology
L. C. Ming, PhD—high-pressure mineralogy
P. J. Mouginis-Mark, PhD—planetary science, remote sensing
C. B. Raleigh, PhD—geology, geophysics
C. Ray, PhD—subsurface hydrology
K. Ruttenberg, PhD—biogeochmistry
J. E. Schoonmaker, PhD—marine geology and geochemistry
E. R. D. Scott, PhD—planetary geosciences
S. K. Sharma, PhD—raman and IR spectroscopy in geochemistry
G. J. Taylor, PhD—planetary geosciences
D. M. Thomas, PhD—geothermal and volcanic geochemistry
R. Wilkens, PhD—rock and sediment properties, bore-hole research
C. J. Wolfe, PhD—seismology, marine geophysics

Affiliate Graduate Faculty

F. S. Anderson, PhD—planetary geosciences
C. Blay, PhD—sedimentology, Hawaiian geology
R. Butler, PhD—seismology
J. Dehn, PhD—volcanology

*Graduate Faculty
The Academic Program

Geology and Geophysics (GG) are important branches of the geosciences, that encompass the scientific study of Earth and other bodies in our solar system. Thus, the scope of the geosciences is extremely broad, and includes important ties to meteorology and oceanography. Earth and other planets are highly dynamic; geoscientists study the internal and surface changes that occur to decipher the fundamental causes of these changes. In turn, these studies shed light on the origin and evolution of Earth processes, the other planets, and, indeed, the entire solar system. The range of interest in Earth and planetary sciences is from submarine volcanism to understanding our environment, from coastal erosion and sea level change to past oceanic, biotic, and climatic changes, from the origins of life to monitoring earthquakes of active volcanoes, and from the composition of meteorites and Mars to the distribution of petroleum and water resources. The geosciences offer a richness in variety and unrivaled opportunity for multidisciplinary research on problems of great intellectual and practical importance.

The Department of Geology and Geophysics has much to offer students curious about humankind’s place in nature. Undergraduate majors can look forward to expanding opportunities in the private and public sectors (e.g., the environment, hydrogeology). Such jobs offer incredible variety, the opportunity to work outdoors, and many opportunities for travel. Prospective undergraduates are strongly encouraged to build communication skills and a solid background of understanding in chemistry, physics, biology, and mathematics as these disciplines are essential for solving the basic questions about how Earth and other planets work. Students with graduate degrees (both MS and PhD) can look forward to interesting research careers in industry, government, or in colleges and universities. The intellectual rewards of basic geosciences research are comparable to such other exciting fields as biomedical research, particle physics, and cosmology. Geosciences have many exciting frontiers and challenges for the future including learning to predict earthquakes and volcanic eruptions, discovering the history of Mars, understanding the forces that move the surface plates of Earth, and unraveling the history of Earth’s surficial processes both on land and in its oceans.

At UH Mānoa, the department offers outstanding programs of study at the graduate and undergraduate levels. The faculty is large (about 29 teaching and research faculty and about 36 additional graduate faculty) and diverse, so there are strong programs in all major subdisciplines. The geographic location in the midst of the Pacific Ocean and the rich geologic setting provide a natural focus for research programs in seismology, volcanology, marine geology and geophysics, planetary science, sedimentology, hydrogeology, geochemistry, paleoceanography, meteorites, and many other fields. The quality of the school’s research vessels, submersibles, and analytical and computing facilities reflects its commitment to excellence in field studies, and well as in theoretical and modeling studies. The quality of the faculty, research facilities, and opportunities is difficult to match.

Advising

Students contemplating a major or minor in geology and geophysics should visit an undergraduate advisor at the earliest opportunity. Inquire at the department’s student services office, HIG 135.

Undergraduate Study

BA in Geology

Requirements

The BA degree in geology is appropriate for students interested in Earth science but not necessarily intending to pursue graduate work or employment in traditional geological sciences. It is more flexible than the BS program and is suitable for students who are considering, for example, a double major, teaching, or fields related to, but not necessarily focused only in geological science.

The BA degree requires completion of 124 credit hours of coursework, the equivalent of four years of full-time work. The BA program requires 35 credits in the geology and geophysics curriculum. This includes one introductory level GG course with a lab, seven non-introductory GG courses, a two-credit research seminar, and at least five credits of approved upper division electives. With advice and consent of an undergraduate advisor, courses in other natural sciences, mathematics, or engineering may be substituted as electives. A mainland summer field course is an elective that students are strongly encouraged to take. Required support classes include physics, chemistry, biological sciences, and one semester of college calculus; these total 23-24 credits and should be taken as early as possible. A minimum grade of C (not C-) must be achieved in all support classes.

Geology and Geophysics Courses

- Required Courses (30 credits)
 - GG 170 Physical Geology (4) or GG 101 Dynamic Earth (3), or GG 103 Geology of the Hawaiian Islands (3)
 - GG 101L Dynamic Earth Laboratory (1) (unless GG 170 is taken)
 - GG 200 Geological Inquiry (4)
 - GG 250 Scientific Programming (3)
 - GG 301 Mineralogy (4)
 - GG 302 Igneous and Metamorphic Petrology (3)
BS in Geology and Geophysics

Requirements

This BS degree is designed for students interested in pursuing graduate work or employment in areas related to geology and geophysics. It provides the essential grounding in computational, analytical, and observational skills needed in earth science. The program is interdisciplinary, emphasizing the integration of biology, chemistry, physics, and mathematics to studying Earth.

The BS in geology and geophysics (GG) requires completion of 124 credit hours of coursework, the equivalent of four years of full-time study. Of this, 48 credits are required in the GG curriculum, including one introductory level geology course with a lab, ten non-introductory level GG courses, a two-credit research seminar, and eleven credits of GG electives. With advice and consent of an undergraduate advisor, courses in other natural sciences, mathematics, or engineering can also be taken as electives. Students are strongly encouraged to take a summer field course as an elective. An undergraduate thesis is also encouraged but not required. The required supporting science classes (28-29 credits) include physics, chemistry, biological science, and college calculus, and should be taken as early as possible. A minimum grade of C (not C-) must be achieved in all support classes.

Geology and Geophysics Courses

- Required GG Courses (37 credits)
 - GG 170 Physical Geology (4) or GG 101 Dynamic Earth (3), or GG 103 Geology of the Hawaiian Islands (3)
 - GG 101L Dynamic Earth Laboratory (1) (unless GG 170 is taken)
 - GG 200 Geological Inquiry (4)
 - GG 250 Scientific Programming (3)
- Required Support Courses (28-29 credits)
 - Chemistry (CHEM 161, 161L, 162, 162L)
 - Calculus I and II (MATH 241 and 242)
 - Physics (170, 170L, 272, 272L)
 - Biological Sciences (BIOL 171, 171L, or ZOOL 101, or MICR 130)

BS Track Emphasizing Basic Science and Research

This alternate BS track allows for a more flexible coursework program that is tailored to the student’s individual goals and requires the student to work with an advisor on a research thesis.

To apply for this track, the student must have received a minimum combined grade point average of 3.0 in 24 credits of the required support courses (see below) as well as in GG 170 (or GG 101 or 103 and GG 101L) GG 200, and GG 250. The application will consist of a one-page statement of the student’s objectives and research interests, presented to a GG departmental undergraduate advisor.

A research experience will be done as follows. A thesis supervisor and topic should be identified in the student’s objectives and research interests, presented to a GG departmental undergraduate advisor.

Course Requirements

- Required GG Courses (22 credits)
 - GG 170 Physical Geology (4) (or GG 101 Dynamic Earth (3), or GG 103 Geology of the Hawaiian Islands (3) and 101L Dynamic Earth Laboratory)
 - GG 200 Geological Inquiry (4)
 - GG 250 Scientific Programming (3)
 - GG 410 Undergraduate Seminar (2)
GG 413 Geological Data Analysis I (3)
GG 499 Undergraduate Thesis (6)
Upper Division GG Electives (25 credits, see above)
Required Support Courses (32 credits)
- Chemistry: CHEM 161 (3), 161L (1), 162 (3), 162L (1)
- Calculus I and II: MATH 241 (4) and 242 (4)
- Physics: PHYS 170 (4), 170L (1), 272 (3), 272L (1)
- Biology: BIOL 171 (3), 171L (1), 172 (3), 172L(1)

Minor in Geology and Geophysics
The minor requires GG 101 or GG 103 or GG 170, GG 101L (unless GG 170 is taken), GG 200, and 11 credits of non-introductory courses at the 300 level or higher. A 2.0 GPA is required in these courses. The minor is flexible and can provide either an introductory survey of geology or emphasize areas of particular interest to the student. A student interested in a minor in geology and geophysics should consult with an advisor from the department to tailor a plan best suited to the student’s interest.

Graduate Study

Admission Requirements
All applicants must take the GRE General Test. All students are urged to have completed a course in a computer programming language before entrance. U.S. applications are due by January 15 for admission in the fall semester or by September 1 for the spring semester. International applications are due January 1 and August 15, respectively.

Undergraduate deficiencies will be determined from the student’s transcripts and intended field of study. Undergraduate coursework deficiencies will be assessed at the preliminary conference. Course GG 611 is intended for students entering from a non-geoscience field to prepare them for graduate studies in the geosciences.

Master’s Degree
Intended candidates will be accepted from undergraduate majors in the natural sciences, mathematics, and engineering, and they normally would be expected to have completed at least one year each of college mathematics, geology, physics, and chemistry. Adequacy of each applicant’s additional preparation will depend on the particular branch of geology and geophysics being pursued. At the time of application the student should state the field in which he or she intends to study.

Requirements
For MS students, the graduate studies committee of the department will determine suitability of Plan A (thesis) or Plan B (non-thesis) at the preliminary conference. Virtually all students are required to follow Plan A. Plan A requires a minimum of 30 credits, including 6 credits of GG 700 Thesis Research and at least 24 credits of course work (up to 6 course work credits may be in GG 699). Plan B requires a minimum of 30 credit hours of course work and a final exam.

Doctoral Degree
Students wishing to bypass the MS degree and advance directly into PhD candidacy must pass a qualifying examination during the second semester in residence.

Requirements
PhD candidates are accepted with either a BS or MS degree. Students without an MS must pass a qualifying examination given at the beginning of their second semester in residence. All PhD candidates must pass a comprehensive examination no later than at the end of the fourth semester of residence for students without an MS degree or at the end of the second semester of residence for students with an MS degree. The comprehensive exam includes oral and written parts that cover in-depth subjects in the student’s field of interest and also the breadth of several areas in this and other departments that bear on the field. A final examination in defense of the dissertation is required. Space and financial aid for the program are limited, so each student’s progress will be reviewed annually.

Areas of Interest
The areas of interest listed below are active fields of research in the department. For each, a brief description and the required undergraduate preparation is listed. Students with backgrounds other than these may be accepted in a field if their records and recommendations are good, but advancement to candidacy may be delayed. A complete statement of the courses and other work in each field necessary for the MS or to prepare for the PhD comprehensive examination will be given to the entering student.

The department can provide further information on research opportunities and financial aid in each of the areas of interest.

Geophysics and Tectonics. Studies in geophysics and tectonics at UH are interdisciplinary and include experimental and theoretical developments, field-based observations, and computer simulations. Together, they provide students with a background that combines both geology and geophysics for technical and professional work at industrial, governmental, and academic institutions. Current research areas include:

- Studies of rift propagation and plate break-up; initiation and evolution of continental margins and back-arc basins; relative and absolute motion of plates; thermo-mechanical properties of oceanic lithosphere; mantle flow and the driving forces of plate tectonics.
- Seismology. Theory and analysis of seismic waves from active and passive sources; ocean-bottom geophysical instrumentation (HUGO); multichannel seismic imaging of subduction zones, accretionary prisms, and submarine volcano flanks.
- Geophysical Fluid Dynamics. Mantle flow and plume-plate interaction; plate generation and rheology from mantle flow; ocean/shore dynamics and nonlinear waves.
- Rock Fracture Mechanics. Coupled field, theoretical, and laboratory analyses of the mechanics of fault growth, rock fracture, dike propagation, landslides, and crustal deformation; these topics are relevant to plate tectonics, structural geology, and engineering geology.

Entrance may be through majors in geophysics, geology, mathematics, physics, or engineering. Students need a
background in geology (which can be obtained in graduate school) together with supporting mathematics and physics.

Marine and Environmental Geology. The Marine and Environmental Geology program (MEG) is focused on the dynamic physical, biological and chemical interactions that characterize Earth surface environments. Our unique geographic location and diverse ethnic population provides an excellent natural laboratory to study the interaction of humans with natural environmental ecosystems to focus research on the Hawaiian Island archipelago. The program provides instructional and research opportunities in a wide range of topics. The MEG program consists of four main areas of research:

Biogeochemistry and Geobiology. Hawai‘i’s access to a variety of tropical ecosystems provides a natural laboratory to study microbial diversity and ecology. Studies in this program include research on the diversity of coral reef microorganisms, both free-living and symbiotic, and their ecosystem roles in bioerosion, succession and colonization of surfaces and nutrient recycling. Studies are also focused on the microbial diversity and ecology of tropical wetlands and marine environments and their relationship to the production and fate of greenhouse gases (CH$_4$, N$_2$O). These programs include study of organisms in laboratory microcosms that can be manipulated to produce past or future environments.

Coastal Geology. Hawai‘i’s beaches and reefs are world-renowned for their beauty. Understanding the processes that shape them helps us to preserve their splendor; this is an important motivation for research in this field. Volcanic islands provide platforms for reef community development and a unique chronicle of past sea level changes. Studies in this program have a particular emphasis on nearshore processes, coastal sedimentation and erosion, remote sensing of reefs, geologic history of Hawaiian reefs, Pacific basin sea level history, and submarine landslides. Research also focuses on carbonate petrology and petrography to derive clues to past environmental changes as well as post-depositional geochemical changes to island limestones.

Hydrogeology of Tropical Volcanic Islands. Almost all types of hydrologic environments are found in the Hawaiian Islands, ranging from near-desert conditions with annual rainfalls of less than 25 cm to Mt. Waialeale on Kaua‘i, which is one of the wettest gauged spots on Earth with annual rainfall of over 10 m, and from sea level to tropical rain forests to snow and permafrost conditions at the top of Mauna Kea at 4.2 km above sea level. Human activities related to tourism and agriculture introduce additional complexities into this delicately balanced environmental system. This unique setting presents important opportunities to study groundwater transport and the fate contaminants, groundwater modeling, and the hydrogeology of Pacific islands and atolls.

Marine Geology and Paleooceanography. Hawai‘i’s central location within the Pacific allows easy access to deep-sea environments. Studies of deep-sea sediments explore the history of changes in ocean chemistry and productivity and their relationships to tectonic movements and climate change. Research programs in MEG also capitalize on the easy access to open ocean environments to test and refine the paleooceanographic tools used to study ancient sediments. Research is focused on elemental and heavy isotope geochemistry, micropaleontology, marine mineral authigenesis and diagenesis, paleooceanography, sedimentology, and stable isotope biogeochemistry.

Many research efforts in this program involve participation in several oceanographic expeditions each year. Graduate students are encouraged to participate in these voyages as a part of their career training. The program is multidisciplinary with cooperating faculty and courses from several other departments including civil engineering, geography, oceanography and soil sciences. The diverse research and teaching interests of the faculty make it possible to tailor graduate degree work to fit the needs and desires of the student.

Typically an undergraduate major in geology or one of the other natural sciences along with basic courses in physics, chemistry, and mathematics would be sufficient for entrance. The student should be prepared for additional work in whatever combination of geology, geophysics, biology, civil engineering and geochemistry is appropriate for his or her optimum development.

Volcanology, Geochemistry, and Petrology. UH is uniquely situated to study all major aspects of volcanic systems. Active Hawaiian volcanoes are natural laboratories of intraplate volcanism and hydrothermalism; eroded fossil volcanic systems on the older islands provide windows into deeper volcanic structures; and Hawai‘i is at the center of the Pacific “Ring of Fire.” Our group studies submarine volcanoes with UH research vessels and remotely monitors volcanoes on Earth and other planets from ground-based and space-borne observatories. Faculty of the Volcanology, Geochemistry, and Petrology (VGP) program operate a wide range of modern, well-equipped analytical laboratories that provide data on the chemical composition and physical properties of rocks and minerals. The Hawai‘i Center for Volcanology is housed at SOEST; it includes scientists from the USGS Hawaiian Volcano Observatory and the Center for the Study of Active Volcanoes at UH-Hilo, facilitating collaborative projects to monitor active volcanoes. In addition, VGP covers basic courses in chemistry, optical mineralogy, petrology, structural geology, and in some cases, geological field methods and remote sensing techniques.

Ocean Spreading Center Processes. Petrologic, geochemical and isotopic variations along and across mid-ocean ridges and back-arc basin spreading centers; geometry and dynamics of mantle flow, melt generation and magma chambers beneath spreading centers; near axis seamount genesis; hot spot-spreading center interactions; magmatic systems at propagating rifts; geochronology of submarine volcanism, elemental fluxes from erupting mid-ocean ridge volcanoes.

Physical Volcanology. The rise, degassing and fragmentation of magma in conduits; transport and deposition from volcanic plumes and pyroclastic density currents; flood basalts and the eruption and emplacement of lavas; caldera volcanoes and ignimbrites; volatile degassing and retention in magma chambers; environmental impact and social consequences of eruptions; origin of dike complexes and rift zones; and volcanic processes on extraterrestrial bodies.

Mantle and crustal geochemistry. Geochemical and isotopic tracing of mantle composition and evolution; geochemical cycling; geosphere-hydrosphere exchanges. These
Intraplate Volcanism and Volcano Monitoring. Petrolologic, geochemical, isotopic, and geologic evolution of Hawaiian and other oceanic islands and seamounts; petrologic, seismic, and geodetic monitoring of magmatic systems at active Hawaiian volcanoes; satellite monitoring of volcanic hazards and eruption clouds; remote-sensing observation of extraterrestrial volcanoes. Relationship of hot spots to flood basalt and oceanic plateau formation; geochemistry of active hydrothermal systems.

Planetary Geoscience and Remote Sensing. The principal objective of this program is to study the geology and composition of objects (planets, asteroids, moons, and meteorites) in the Solar System in order to understand their origin and evolution. It involves research in planetary and terrestrial geology, cosmochemistry, volcanology, planetary astronomy, and scientific instrumentation. Current research areas include:

Meteoritics and Cosmochemistry. Research on extraterrestrial materials (from asteroids, the Moon, and Mars) focuses on the vast array of processes that formed and modified planets and asteroids. Central themes of our research are: (1) processes in the solar nebula (2) alteration processes in asteroids (3) the effects of shock on mineralogy, textures, and isotopic systems (4) igneous processes, and (5) planetary crustal compositions and evolution.

Inner Planets and the Moons. Several HIGP faculty are involved in a number of remote sensing and petrology projects that have as their focus deriving greater knowledge of the composition of the crust and mantle of the Moon, which is crucial to understanding lunar origin and differentiation. Mars research is focused on the study of geologic processes, and the analysis of the composition of the surface. High resolution images, compositional information and topographic data from satellites in orbit around Mars (Mars Global Surveyor, Mars Odyssey) allow us to explore volcanic processes and the mode of formation of impact craters. Data from thermal infrared and gamma-ray spectrometers are used to study the composition of Martian crust and weathering history of the planet.

Terrestrial Remote Sensing. Several faculty within HIGP are involved with analysis of volcanic thermal spacecraft (Landsat 7, EO-1, Terra, Aqua, GOES), aircraft, and ground observations. These data allow studies of flux magma through volcanic systems and evaluation of eruption precursors. Similar work on thermal anomalies focuses on the study of forest fires worldwide. Data from the GOES geostationary satellite are made available on the HIGP website (goes.higp.hawaii.edu) and MODIS thermal alerts for the entire world are made available at modis.higp.hawaii.edu. Radar remote sensing is also conducted within HIGP. This includes the study of volcano topography using data from the Shuttle Radar Topography Mission (SRTM), and interferometric studies of volcano deformation using ENVISAT data for understanding magma emplacement and volcano tectonics.

Instrument Development. HIGP has many years of experience in developing instruments for use in studying global and regional problems in Earth and planetary science. One group is developing hyperspectral thermal infrared imagers for use in lithologic mapping. A new instrument is also in the development stage for flight on the International Space Station, and will study coral reefs. HIGP has developed real-time, field-based methods for measuring thermal activity and flux of sulfur dioxide from volcanoes, and works with the U.S. Geological Survey to monitor Kilauea volcano on the Big Island. Other groups are developing (1) a synthetic aperture sonar system, (2) an infrasonics array as part of a global monitoring system for the detection of atmospheric disturbances, and (3) lidar systems for the measurement of atmospheric aerosols and rock compositions. Another group built the HIGP Acoustic Wide Angle Imaging Instrument, Mapping Researcher 1 (HAWAII MRI).

Typically, an undergraduate major in geology, astronomy, physics, or engineering, along with basic courses in chemistry, physics, and mathematics, would be sufficient for entrance. The student should be prepared to commence or continue course work in whatever combination of geology, geophysics, geochemistry, planetary science, spectroscopy, radar science, or remote sensing is appropriate for optimum development in the field.

Global Environmental Science

Marine Science Building 205D, 226/230 1000 Pope Road Honolulu, HI 96822 Tel: (808) 956-9937 Fax: (808) 956-9225 E-mail: ges@soest.hawaii.edu Web: www.soest.hawaii.edu/oceanography/GES/

Faculty

J. E. Schoonmaker, PhD (Undergraduate Chair)—sedimentary geochemistry and diagenesis; interpretation of paleoenvironment and paleoclimate sedimentary records

J. M. Becker, PhD—geophysical fluid dynamics, nonlinear waves and stability, coastal processes, general ocean circulation

R. R. Bidigare, PhD—bio-optical oceanography, pigment biochemistry, plankton metabolism

S. Businger, PhD—mesoscale and synoptic meteorology

A. D. Clarke, PhD—physical and chemical properties of aerosol in remote troposphere, aircraft studies of aerosol in free troposphere

J. P. Cowen, PhD—microbial geochemistry, particle aggregation dynamics, hydrothermal systems

E. H. DeCarlo, PhD—aquatic chemistry; metals and their anthropogenic inputs, transformations, fate and transport

S. Dollar, PhD—biogeochemistry, nearshore processes and effects of human activity on the coastal zone

J. C. Drazen, PhD—physiological ecology of marine fishes, energetics and trophodynamics, deep-sea biology, adaptations of fishes to the deep-sea

A. El-Kadi, PhD—hydrogeology, modeling groundwater systems

R. C. Ertekin, PhD—hydrodynamics, computational methods, offshore and coastal engineering, oil-spill spreading, fishpond circulation
E. Firing, PhD—ocean circulation and currents on all scales, with emphasis on observation and fluid dynamics
P. J. Flament, PhD—surface ocean layer dynamics, mesoscale circulation structures of the ocean, remote sensing of the sea surface
C. H. Fletcher, PhD—quaternary and coastal marine geology, sea-level history, coastal sedimentary processes
P. Fryer, PhD—marine geology, petrology, tectonics
E. Gaidos, PhD—molecular evolution; microbiology of extreme environments; biosphere-climate feedbacks; critical intervals in Earth history; exobiology; biological networks
M. O. Garcia, PhD—volcanology, igneous petrology, geochemistry
T. W. Giambelluca, PhD—interactions between the atmosphere and the land surface, including influences of land use and land cover change on climate and surface hydrology and effects of global climate change on hydrologic processes and terrestrial ecology
B. T. Glazer, PhD—biogeochemical processes in marine environments; use of molecular methods to characterize and understand synergy of geomicrobiology
C. R. Glenn, PhD—paleoceanography, marine geology, sedimentology, sediment diagenesis
E. G. Grau, PhD—environmental physiology and comparative endocrinology of fish
M. P. Hamnet, PhD—coastal zone management; fisheries economics; disaster preparedness and mitigation
B. J. Huebert, PhD—air pollution, climate change, atmospheric aerosols, global elemental cycles, air/sea gas exchange
M. C. Jarman, LLM—environmental law, administrative law, ocean and coastal law, legal writing; the public trust doctrine, land use, the intersection of indigenous peoples’ rights and environmental law, and community empowerment through the law
Z. Johnson, PhD—phytoplankton photosynthesis and microbial phototrophy, microbial population structure and diversity with attention to ecosystem functioning, microbial genome structure and comparative genomes
D. E. Konan, PhD—international trade, microeconomics, computational economics
E. A. Laws, PhD—phytoplankton ecology, aquatic pollution, aquaculture
Y. H. Li, PhD—marine geochemistry, environmental pollution
K. Lowry, PhD—design, planning and evaluation of ocean and coastal management programs. Experience in Hawai’i, Indonesia, Sri Lanka, Philippines and Thailand
R. Lukas, PhD—physical oceanography, interannual and decadal climate variability
F. T. Mackenzie, PhD—geochemistry, biogeochemical cycling, global environmental change
L. Magard, PhD—climate and society
J. J. Mahoney, PhD—isotope geochemistry of oceanic and continental crust and mantle
A. Malahoff, PhD, DSc—geological and geophysical oceanography, submarine volcanism, hydrothermal, and mineral formation processes, structure of the ocean crust
G. M. McMurry, PhD—geochemistry, geology and geophysics
M. A. McManus, PhD—descriptive physical oceanography, coupled physical-biological numerical models; development of ocean observing systems
C. Measures, PhD—trace element geochemistry, hydrothermal systems, elemental mass balances
P. Menon, PhD—environmental and occupational health standards
M. Merlin, PhD—biogeography, natural history of the Pacific
M. A. Merrifield, PhD—physical oceanography; coastal circulation; sea level variability; current flows and mixing in the vicinity of coral reefs, islands and seamounts
J. N. Miller, MS—marine and land environmental management, environmental assessment
T. Miura, PhD—remote sensing of terrestrial vegetation, GIS
G. F. Moore, PhD—marine geophysics, structural geology
M. J. Mortl, PhD—hydrothermal processes, geochemical cycles
P. Mouginis-Mark, PhD—volcanology from space, remote sensing of natural hazards
P. K. Muller, PhD—ocean circulation, waves and turbulence
B. N. Popp, PhD—isotope geochemistry, organic geochemistry
J. N. Porter, PhD—atmospheric science, use of satellites to study aerosol and cloud forcing, ship measurements of aerosol and cloud optical properties
M. S. Rappe, PhD—ecology of marine microorganisms; genomics; coral-associated microorganisms; ecology of microorganisms in the deep subsurface
G. Ravizza, PhD—paleoceanography and environmental chemistry; geologic history of chemical weathering; geochemistry of recent and ancient metalliferous sediments; anthropogenic influences on the geochemical cycles of the platinum group elements; chemical signatures of extraterrestrial matter in marine sediments; biogeochemistry of molybdenum in the marine environment
K. J. Richards, PhD—observations and modeling of ocean processes, ocean dynamics, ocean atmosphere interaction, ecosystem dynamics
M. A. Ridgley, PhD—resource management and human-environment system analysis
J. Roumasset, PhD—environmental economics and sustainable growth
K. Rubin, PhD—isotope geochemistry, chronology
K. Ruttenberg, PhD—biogeochemistry of phosphorus and phosphorus cycling in the ocean, rivers, and lakes; nutrient limitation of aquatic primary productivity; effects of redox chemistry on nutrient cycling; early diagenesis in marine sediments with focus on authigenic mineral formation and organic matter mineralization
F. J. Sansone, PhD—suboxic/anoxic diagenesis in sediments, hydrothermal geochemistry, lava-seawater interactions, trace gas geochemistry
N. Schneider, PhD—decadal climate variability, tropical air-sea interaction, coupled modeling
T. Schroeder, PhD—mesometeorology, tropical meteorology
S. K. Sharma, PhD—atmospheric instrumentation and remote sensing; Lidar, Raman, and infrared spectrometry and fiber-optic environmental sensors
C. R. Smith, PhD—benthic and ecology, deep-sea biology, sediment geochemistry, climate-change effects on Antarctic ecosystems, marine conservation
G. Steward, PhD—aquatic microbial ecology, molecular ecology and diversity of viruses and bacteria
M. E. Tiles, PhD—logic, history, and philosophy of mathematics, science, and technology
A. Timmermann, PhD—coral bleaching, stability of the thermohaline circulation, stochastic climate modeling, nonlinear statistics, detection of greenhouse warming
B. Wang, PhD—atmospheric and climate dynamics
G. Wang, PhD—microbial diversity, ecology and biotechnological potential of marine sponges, synthetic biology and ecological
approach of marine microbes for pharmaceuticals and renewable energy, marine biosensing for environmental biotechnology and ecology

B. Wilcox, PhD—population biology; human-ecosystem interaction; ecological and human health linkages

J. C. Wiltshire, PhD—marine minerals, mine tailings and disposal, remediation and submersible engineering and operations

R. E. Zeebe, PhD—global biogeochemical cycles, carbon dioxide system in seawater and interrelations with marine plankton, paleoceanography, stable isotope geochemistry

Degree Offered: BS in global environmental science

The Academic Program

Global environmental science is a holistic, scientific approach to the study of the Earth system and its physical, chemical, biological, and human processes. It is a bold new academic program designed to educate leaders and citizenry to become wise stewards of our planet. Global environmental science focuses on the global reservoirs of hydrosphere (water, primarily oceans), biosphere (life and organic matter), atmosphere (air), lithosphere (land, sediments, and rocks), and cryosphere (ice); their interfaces; and the processes acting upon and within this interactive system, including human activities. In the course of their scientific studies, global environmental science students are able to investigate natural as well as economic, policy, and social systems and their response and interaction with the Earth system. Global environmental science has important ties to the more classical sciences of geology and geophysics, meteorology and climatology, oceanography, and ecology as well as to the social sciences. Thus, the scope of global environmental science is extremely broad. This breadth is reflected in the interdisciplinary nature of the faculty, which is primarily drawn from numerous departments and research institutions within the School of Ocean and Earth Science and Technology.

Global environmental science has much to offer the student who is interested in the environment and the effect of humans on the environment. The skills developed in global environmental science can be brought to bear on local, regional, and global environmental issues. Many of the critical environmental problems confronting humankind involve large-scale processes and interactions among the atmosphere, oceans, biosphere, cryosphere, shallow lithosphere, and people. Some of the problems derive from natural causes; others are a result of human activities. Some of the issues that global environmental science students deal with are: climatic changes from anthropogenic inputs to the atmosphere of CO₂ and other greenhouse gases; human interventions and disruptions in the biogeochemical cycles of carbon, nitrogen, phosphorus, sulfur, trace metals, and other substances; emissions of nitrogen and sulfur oxide gases and volatile organic compounds to the atmosphere and the issues of acid deposition and photochemical smog; depletion of the stratospheric ozone layer and associated increase in the flux of ultraviolet radiation to Earth’s surface; increasing rates of tropical deforestation and other large-scale destruction of habitat, with potential effects on climate and the hydrologic cycle; disappearance of biotic diversity through explosive rates of species extinction; global consequences of the distribution and application of potentially toxic chemicals in the environment and biotechnology; interannual and interdecadal climate variability, e.g., El Niño/Southern Oscillation; eutrophication; water and air quality; exploitation of natural resources with consequent problems of waste disposal; earthquakes, tsunamis, and other natural hazards and prediction; and waste disposal: municipal, toxic chemical, and radioactive. In all cases, the student is encouraged to understand and appreciate the social, economic, and ultimately the policy decisions associated with these and other environmental issues.

Specifically with respect to learning objectives, the students develop competency in understanding how the physical, biological, and chemical worlds are interconnected in the Earth system. They obtain skills in basic mathematics, chemistry, physics, and biology that enable them to deal with courses in the derivative geological, oceanographic, and atmospheric sciences at a level higher than that of qualitative description. In turn, these skills enable the students to learn the subject matter of global environmental science within a rigorous context. The students develop an awareness of the complexity of the Earth system and how it has changed during geologic time and how human activities have modified the system and led to a number of local, regional, and global environmental issues. They become competent in using computers and dealing with environmental databases and with more standard sources of information in the field. They are exposed to experimental, observational, and theoretical methodologies of research and complete a senior research thesis in environmental studies using one or more of these methodologies. Field work is encouraged for the senior thesis and, depending on the topic chosen by the student, can be carried out at the Hawai‘i Institute of Marine Biology’s Coconut Island facility, E. W. Pauley Laboratory, associated He‘eia ahupua‘a, or elsewhere.

The ultimate objective of the global environmental science program is to produce a student informed in the environmental sciences at a rigorous level who is able to go on to graduate or professional school; enter the work force in environmental science positions in industry, business, or government; enter or return to teaching with knowledge of how the Earth system works; or enter the work force in another field as an educated person with the knowledge required to become a wise environmental steward of the planet.

Advising

Students contemplating a major in global environmental science should visit the program coordinator at the earliest opportunity. Inquire at the global environmental science office, Marine Science 205D, 226/230; tel. (808) 956-9937, fax (808) 956-9225; e-mail: ges@soest.hawaii.edu.

BS in Global Environmental Science

University Core and Graduation Requirements

Of the 31 credits of UH Core Requirements, 10 are in math and science and are fulfilled through the GES degree. UH Graduation Requirements include 8 Focus
Global Environmental Science Requirements

Aside from UH Core and Graduation requirements, the global environmental science program has core requirements of two basic types: basic sciences and derivative sciences. The former provides the foundation to understand and appreciate the latter in the context of basic skills and mathematics, biology, chemistry, and physics. Both global environmental science core requirements provide the necessary cognitive skills to deal with the higher academic level courses within the global environmental science curriculum. These include 7 required foundation courses in global environmental science and a minimum of 4 coupled systems courses. It is within this latter category of course work that the formal course program will be tailored to the individual student’s needs. For example, we anticipate that most students will follow closely a natural science core to understand and appreciate issues of global change, some students may wish to expand their academic program into the social sciences that bear on the human dimensions issues involved in the subject matter of environmental change, some students may wish to expand their academic program into the social sciences that bear on the issues of global change.

A minimum grade of C- must be obtained in all GES required courses.

Core Basic Sciences Requirement (38 hours)

- BIOL 171/171L, 172/172L
- CHEM 161/161L, 162/162L
- MATH 241, 242
- MATH 243, 244 or OCN/GG 312, ECON 321
- PHYS 170/170L, 272/272L

Core Derivative Sciences Requirement (11 hours)

- GG 101/101L or GG 170
- MET 200
- OCN 201/201L

Foundation Course Requirements (18 hours)

- GEOG 411 Human Dimensions of Global Environmental Change or GEOG 410 Human Role in Environmental Change
- OCN 100 Global Environmental Science Seminar
- OCN 310 Global Environmental Change
- OCN 310L Global Environmental Change Lab
- OCN 320 Aquatic Pollution
- OCN 363 Earth System Sciences Databases
- OCN 401 Biogeochemical Systems

Coupled Systems Courses (Examples)

- BIOL 241 Fundamentals of Biochemistry
- BIOL 265 Ecology and Evolutionary Biology
- BIOL 301 Marine Ecology and Evolution
- BIOL 360 Island Ecosystems
- BIOL 398 Biology of Marine Mammals
- BIOL 404 Advanced Topics in Marine Biology
- BOT 480 Algal Diversity and Evolution
- ECON 358 Environmental Economics
- ECON 458 Project Evaluation and Resource Management
- ECON 638 Environmental Resource Economics
- GEOG 300 Introduction to Climatology
- GEOG 401 Climate Change
- GEOG 402 Agricultural Climatology
- GEOG 405 Water in the Environment
- GEOG 488 Geographic Information Systems
- GG 301 Mineralogy
- GG 309 Sedimentology and Stratigraphy
- GG 420 Coastal Geology
- GG 421 Geologic Record of Climate Change
- GG 425 Environmental Geochemistry
- GG 455 Hydrogeology
- GG 466 Planetary Geology
- MET 302 Atmospheric Physics
- MET 303 Introduction to Atmospheric Dynamics
- MICR 401 Marine Microbiology
- NREM 301/301L Natural Resource Management/Lab
- NREM 302 Natural Resource and Environmental Policy
- NREM 304 Fundamentals of Soil Science
- NREM 461 Soil and Water Conservation
- OCN 330 Mineral and Energy Resources of the Sea
- OCN 331 Living Resources of the Sea
- OCN 402 Solar Nebula to the Human Brain
- OCN 403 Marine Functional Genomics and Biotechnology
- OCN 480 Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans
- OCN 620 Physical Oceanography
- OCN 621 Biological Oceanography
- OCN 622 Geological Oceanography
- OCN 623 Chemical Oceanography
- OCN 633 Biogeochemical Methods in Oceanography
- OCN 638 Earth System Science and Global Change
- PHIL 315/OCN 315 The Role of Models in Global Environmental Science
- PHIL 316 Science, Technology, and Society
- PLAN 310 Introduction to Planning
- POLS 316 International Relations
- SOC 412 Analysis in Population and Society
- ZOOL 410 Corals and Coral Reefs
- ZOOL 466 Fisheries Science

The student may also wish to take additional courses in fundamental physics, chemistry, biology, or mathematics. Global environmental science currently has three optional tracks (or combination of electives):

1. Marine science and environment: In this track, the student concentrates his/her studies in marine/ocean science and the application of their work to environmental problems related to the ocean. The student is encouraged to take as many oceanography courses as practical and to have a senior thesis problem that is related to ocean studies. It is within this track that a student’s program can be designed so that the student is able to apply to graduate school in oceanography.
2. Policy/economics and environment: this track enables the student, after satisfying the GES science core, to concentrate further course work and the senior thesis in environmental economics, policy, and law. This is probably the best route for a student to take who is going directly into the workplace or is simply interested in becoming a wise environmental steward of the planet.

3. Climate and environment: this track enables the student to concentrate academic studies and the senior thesis topic on the interactions between climate and the environment, on human impacts on climate, and the causes of climatic change. The student is encouraged to take coupled systems courses in meteorology and climatology.

Majors should consult with their advisor as early as possible to devise a curriculum suited to their particular goals.

Senior Research Thesis (5-8 hours)
- OCN 490 Communication of Research Results
- OCN 499 Undergraduate Thesis

Each student is required to complete a senior thesis based on research conducted with one or more chosen advisors, and to make a public presentation of their research results.

Meteorology

HIG 350
2525 Correa Road
Honolulu, HI 96822
Tel: (808) 956-8775
Fax: (808) 956-2877
E-mail: metdept@hawaii.edu
Web: www.soest.hawaii.edu/MET

Faculty
* T. A. Schroeder, PhD (Chair)—mesometeorology—severe local storms, flash flood meteorology, interactions of island with synoptic environments
* G. M. Barnes, PhD—mesometeorology, hurricanes, and boundary layer meteorology
* S. Businger, PhD—mesoscale and synoptic meteorology, satellite meteorology, storm structure and dynamics
* Y. L. Chen, PhD—mesoscale meteorology, heavy rainfall
* P. S. Chu, PhD—climate variability and natural hazards, tropical cyclones, climate prediction
* K. P. Hamilton, PhD—dynamical meteorology and climate dynamics
* F. F. Jin, PhD—atmospheric dynamics, climate dynamics
* T. Li, PhD—climate dynamics and coupled atmosphere-ocean modeling
* V.T.J. Phillips, PhD—cloud physics, nucleation processes, aerosol-cloud interactions in climate change, storm electrification
* D. E. Stevens, PhD—atmospheric dynamics
* B. Wang, PhD—climate dynamics, geophysical fluid dynamics, and tropical meteorology

*Y. Wang, PhD—atmospheric dynamics and physics, climate modeling, tropical meteorology
*S. P. Xie, PhD—large scale ocean-atmosphere interaction, climate dynamics
*J. Zhao, PhD—atmospheric chemistry and aerosols

Cooperating Graduate Faculty
H. Annamalai, PhD—tropical climate dynamics, climate variability and prediction
A. D. Clarke, PhD—marine aerosols, biogeochemical cycles, optical properties
B. J. Huebert, PhD—atmospheric chemistry
J. Porter, PhD—satellite and ground-based optical sensing of atmospheric aerosols

Affiliate Graduate Faculty
P. G. Black, PhD—aircraft analysis of hurricanes
C-P. Chang, PhD—tropical meteorology
H. M. Juang, PhD—mesoscale modeling and numerical weather prediction
Y. H. Kuo, PhD—mesometeorology
W. C. Lee, PhD—radar and mesoscale meteorology
F. D. Marks, ScD—tropical cyclones
M. S. Peng, PhD—dynamic meteorology, numerical modeling, and tropical cyclones

Degrees Offered: BS in meteorology, MS in meteorology, PhD in meteorology

The Academic Program

Meteorology (MET) is the study of phenomena in the Earth’s atmosphere. These phenomena include the daily weather and climate. Students pursuing the BS in meteorology receive preparation for professional employment in meteorology and are qualified for employment in the federal meteorological agencies. The meteorology major must be well-grounded in the fundamentals of mathematics and physics. Thus BS graduates are qualified to pursue graduate studies both in meteorology and other applied sciences, such as oceanography or computer sciences. Graduate degrees prepare students to pursue research careers both with government and in academia.

The meteorology program at UH Mānoa is unique in its focus on tropical meteorology. The tropics exert critical controls on the global atmosphere. BS students receive comprehensive training in tropical weather analysis and forecasting. Graduate students often pursue thesis research in tropical meteorology; some study topics that take advantage of Hawai’i’s unique natural laboratory. Some students pursue graduate thesis research with funding from the National Weather Service, whose Honolulu Weather Forecast Office is housed in the same building as the meteorology department. Meteorology faculty cooperate actively with physical oceanography faculty through the Joint Institute for Marine and Atmospheric Research and the International Pacific Research Center in the study of air-sea interaction and climate variability. Students also have access to both research databases and cooperative employment opportunities at the Joint Typhoon Warning Center, Pearl Harbor.
Affiliations
UH is an active member of the University Corporation for Atmospheric Research.

Advising
The department has one undergraduate advisor, who may be contacted through the department office (808) 956-8775. Graduate students are assigned individual faculty advisors by the graduate chair after their preliminary conference.

Undergraduate Study

Bachelor's Degree

Requirements
Students must complete 124 credit hours, including:
- General Education Core (see the “UH Mānoa General Education and Graduation Requirements” section of this Catalog).
- MET 101L and 200
- MATH 243 and 244 (Students planning careers with federal meteorological agencies should take MATH 405.)
- PHYS 170/170L and 272/272L
- 21 credit hours in meteorology courses numbered 300 and above, including MET 302, 303, 305, and 402; and MET 412 or 416 (Students planning careers with federal meteorological agencies should take both 412 and 416.)
- 15 additional credit hours from physical and mathematical sciences (e.g., engineering, geography, geology and geophysics, information and computer sciences, mathematics, oceanography, physics, and soil science) including (but not limited to) MET 310, 405, 406, and 600; MET 412 or 416; CEE 424 and 626; GEOG 300, 303, and 402; GG 455; ICS 211, 311, and 442; MATH 311, 371, 373, 402, 403, and 405; OCN 620; PHYS 274/274L and 400
- CHEM 161/161L and 162 (Honors students can take CHEM 181/181L instead of CHEM 161/162)
- ICS 111 or MET 320

Minor

Requirements
Students must complete 15 credit hours of non-introductory courses, including:
- MET 200, 302, and 303
- 6 credits of electives from MET 305, 310, 405, 406, 412 and 416

Graduate Study

The department offers MS and PhD degrees. Through courses in dynamic, synoptic, and physical meteorology, students develop a strong foundation in tropical meteorology, the department’s special field, and are prepared to do research in the atmospheric sciences.

Candidates should have a thorough preparation in physics (with calculus), chemistry, and mathematics through differential equations. Undergraduate courses in physical, dynamic and synoptic meteorology are expected, but they can be taken in the first year.

Master's Degree

Requirements
Graduation with a master’s degree requires completion of an acceptable thesis and a successful defense of the thesis in an oral examination.

A total of 30 official course credit hours must also be earned. This will be made up of:
1. At least 18 credits of regular course work (i.e., excluding MET 699, MET 700 and MET 765), with a minimum of 12 credits in courses numbered 600 and above.
2. 1 credit of MET 765
3. 6 credits of MET 700 Thesis Research and
4. 5 more credits either from regular courses or MET 699

Directed Research

As part of (1) the student must pass with a grade of B- or higher, each of our “core graduate courses” of MET 600, 610, and 620.

Our core requirements also include one term of synoptic meteorology. Unless a student has completed an equivalent course elsewhere, this requirement is met by passing with at least a B- either MET 412 or MET 416.

Students must obtain a minimum GPA of 3.0 for the courses counted as our core (MET 600, 610, and 620, plus one of MET 412 or MET 416, if that is taken by the student).

As well, students must maintain a GPA of at least 3.0 for the courses they take in the MS program.

Doctoral Degree

The PhD student exhibits a higher level of independence and originality of thought than that required of the MS student.

Requirements
Students must satisfy several requirements in order to graduate with a PhD degree. Each student is required to pass at least 8 graduate level courses numbered 600 and above with a grade of B- or higher. These courses will be in dynamic, synoptic, physical, tropical meteorology, oceanography or other closely related fields. At least five of these courses must be completed at the Mānoa campus. By this we mean that, at the discretion of the faculty, a student may be awarded credit for up to three relevant graduate courses taken elsewhere. The courses taken either here or elsewhere need to cover the core requirements MET 600, 610, 620 and one of MET 412 or MET 416. A student must pass each of these core courses with a grade of at least B-. A student must obtain a minimum 3.0 GPA in the core courses taken at Mānoa. A student must also maintain a GPA of at least 3.0 for all the courses taken in the PhD program at Mānoa.

After these 8 courses are successfully completed, but no later than the 24th month in the PhD program, each student must pass a two-part comprehensive examination. The purpose of this exam is to ascertain the student’s comprehension of the broad field of meteorology and so to insure that the student is well prepared for PhD research. The first part of the
comprehensive examination is a set of written exercises, this is followed by an oral examination.

No later than 12 months after successful completion of the comprehensive examination, each student is required to submit a written research proposal for approval to his/her dissertation committee.

A PhD student must also successfully complete two semesters of MET 765 during his/her PhD studies (MET 765 taken before the student was admitted to the PhD program cannot be counted towards satisfying this requirement).

Finally, the student must complete an acceptable PhD thesis and successfully defend it in a public final oral examination.

Ocean and Resources Engineering

Holmes Hall 402
2540 Dole Street
Honolulu, HI 96822
Tel: (808) 956-7572
Fax: (808) 956-3498
E-mail: admin@ore.hawaii.edu
Web: www.ore.hawaii.edu

Faculty
J. C. Wiltshire, PhD (Chair)—acoustics, marine minerals, marine mining technology
K. F. Cheung, PhD—coastal and offshore engineering, hydrodynamics, computational methods, water wave mechanics, coastal flood hazards
R. C. Ertekin, PhD—naval architecture, offshore engineering, hydrodynamics, computational methods
B. D. Greeson, PhD—offshore engineering, hydrodynamics, ROV/ submersible operations
G. Pawlak, PhD—coastal mixing processes, fluid dynamics, sediment transport

Cooperating Graduate Faculty
J. M. Becker, PhD—general ocean circulation
M. Chyba, PhD—control theory
R. H. Knapp, PhD—structural engineering
A. Malahoff, PhD—ocean resources engineering
S. H. Masutani, PhD—ocean resources engineering
G. McMurtry, PhD—oceanographic engineering
M. A. Merrifield, PhD—coastal and near-shore processes
G. Nihous, PhD—ocean resources engineering
H. R. Riggs, PhD—structural engineering
J. R. Smith, PhD—marine survey
J. Yu, PhD—marine bioproducts engineering

Affiliate Graduate Faculty
D. Rezachek, PhD—ocean energy and engineering design
J. van Ryzin, PhD—mechanical and ocean engineering
D. Vithanage, PhD—coastal engineering, nearshore circulation

Degrees Offered: MS in ocean and resources engineering, PhD in ocean and resources engineering

The Academic Program

Ocean and Resources Engineering is the application of ocean science and engineering design to the challenging conditions found in the ocean environment and to the synthesis of novel products from marine systems. Waves and currents, turbulence, dynamic loads, mobile sediment, high pressure and temperature variations, as well as chemical and biological processes, are among the considerations that set ocean and resources engineering apart from conventional land-based engineering.

Educational and research emphasis is placed on coastal engineering, offshore engineering and ocean resources engineering. Coastal engineering deals with coastal and harbor problems, sediment transport, nearshore environmental engineering, and coastal flood hazards. Offshore engineering is concerned with structures and systems used in the deeper parts of the ocean, including the continental shelf. It also includes hydrodynamics of fluid-body interaction, seakeeping and dynamic responses of marine vehicles and platforms, and hydroelasticity of very large floating structures. Ocean resources engineering is concerned with the engineering systems to develop the energy, minerals and living resources of the oceans, the use of the ocean for waste disposal, and the environmental and economic aspects of these activities. The MS program in ocean and resources engineering is accredited by the Accreditation Board for Engineering and Technology (ABET), which provides accreditation services to the first degree offered by engineering programs.

The educational and research programs in the department have a good balance between numerical and laboratory modeling as well as field observation. Computing facilities consist of several IBM RS/6000 servers and many networked PCs installed with application software. The department’s Environment Fluid Dynamics Laboratory focuses on the study of coastal marine processes including turbulent dispersal of pollutants and nutrients, wave dynamics, and sediment transport. Laboratory instrumentation includes an acoustic doppler velocimeter, a laser-based Digital Particle Imaging Velocimetry system, and an Argon-Ion laser with digital still and video cameras. The department maintains research facilities at Kewalo Basin and Snug Harbor in Honolulu for field work and in-ocean experiments. These facilities include field research equipment and instrumentation, autonomous and remotely operated vehicles (AUV, ROV) access to coastal research vessels, as well as machine shop support. The Kilo Nalu Observatory off Kewalo Basin extends from 5 to 40 m depth with test platforms equipped with land-based power supply outlets and data connections.

The graduate program in ocean and resources engineering channels the students’ previous engineering or scientific experience to ocean-related careers. Approximately 50% of the 2000-2006 graduates found work in private industry including oil companies, shipyards, consulting and environmental service firms, classification societies, and construction companies in the U.S. About 30% of them joined or continued their employment with federal and state agencies. Another 15% continued to study in the U.S. and 5% returned to their countries of origin. Forty percent of the graduates stayed in Hawai‘i.
Educational Objectives
The Department of Ocean and Resources Engineering offers a graduate program leading to the Master of Science (MS) and Doctor of Philosophy (PhD) degrees. The goal of the program is to prepare students for the engineering profession and to conduct research in the support of the educational program. The objectives of the program at the MS level are to produce graduates who, during the first few years following graduation:
1. Are effective and creative engineers applying knowledge of mathematics and science to the solution of practical engineering problems;
2. Have general understanding of and ability to work in the ocean and resources engineering disciplines;
3. Are proficient in one or more of the ocean and resources engineering disciplines;
4. Are aware of professional, managerial, legal, ethical and other non-technical issues commonly encountered in engineering practice;
5. Can communicate and work effectively with peers, clients and the general public in promoting new ideas, products or designs; and
6. Can adapt to the changing needs and technology of the ocean and resources industry.

The program at the PhD level shares these objectives with the additional emphasis to produce graduates who:
7. Are productive researchers conducting original research and developing new technology in ocean and resources engineering; and
8. Have the experience to publish in refereed journals. This additional emphasis prepares the PhD graduate to pursue research careers in the industry or academia.

Admission Requirements
Students are admitted for graduate study on the basis of their scholastic records. Applicants for the MS program usually have a bachelor’s degree in an engineering discipline that provides an adequate background in mathematics, science, and mechanics. Students with mathematics, physics or other science backgrounds may be admitted to the program, but are required to take specific undergraduate courses to satisfy the pre-program requirements, which include one year of college-level mathematics and science, and one and one half years of basic engineering topics, and a general education component complementing the technical content of the curriculum.

Students seeking admission to the PhD program should have an MS in engineering or equivalent qualification. However, exceptionally well-qualified students with a BS in engineering, who do not have a master’s degree, may petition to be admitted to the PhD program directly. Official scores in the GRE General Test are required for all PhD applicants.

Master’s Degree
The MS degree in ocean and resources engineering may be earned under either Plan A (thesis) or Plan B (non-thesis). The program requires a minimum of 30 credit hours. At least 24 credit hours must be earned in advanced courses numbered 600 or above. Up to 2 credit hours of directed reading and 6 transferred credits can be counted toward the MS requirements. Students are required to take the general examination during the first semester of their full-time enrollment to test their knowledge in mathematics, science, and basic engineering. Passing the examination advances the student to master’s candidacy.

Students generally devote their first semester to the basic disciplines in ocean and resources engineering and then specialize in coastal, ocean resources, or offshore engineering by taking the required courses in the area. The core courses ORE 411, 601, 603, 607 and 609 cover the basic disciplines that include hydrostatics, hydrodynamics, oceanography, water waves, underwater acoustics, and field and laboratory work. One credit of seminars, ORE 792, is also included in the core requirements. The required courses are ORE 661, 664 and 783B in coastal engineering; ORE 612, 630 and 783C in offshore engineering; and ORE 677, 678 and 783D in ocean resources engineering. The ORE 783 Capstone Design Project is team-taught by faculty members and practicing professional engineers to prepare students for the engineering profession. The core and required courses amount to 25 credit hours and the remaining credits are to be chosen to form a coherent plan of study.

Students complete their study with a Plan A thesis or a Plan B independent project. The thesis option is research oriented and students receive 6 academic credits for the work. The project option focuses on engineering application or design and carries 3 academic credits. Both require a proposal outlining the subject area, objectives, proposed methodology, sources of data, and anticipated results that must be approved by a committee of at least three graduate faculty members. The work results in a thesis or a report that demonstrates both mastery of the subject matter and a high level of communication skills. Students must present and defend the work at a final examination, which provides the faculty an opportunity to test the students’ understanding and ability to integrate their work at the MS level.

The general and final examination may be repeated once. The general examination must be taken earlier than the semester in which the final examination is taken.

PhD Degree
Students pursuing the PhD degree are required to achieve a broad understanding of the principal areas of ocean and resources engineering, as well as a thorough understanding of a specific area. Students must, at a minimum, possess the knowledge covered by the core courses of the MS degree in ocean and resources engineering.

All intended candidates for the PhD degree should take a written qualifying examination before or during the third semester of full-time enrollment. In addition to covering the basic undergraduate fundamentals, the examination tests the students’ understanding of the coursework at the MS level. After passing the examination and being advanced to candidacy, students must take a comprehensive examination, which tests their ability to carry out original research and preparation for the selected dissertation topic.
The dissertation topic must be approved by a committee consisting of a minimum of five graduate faculty members with at least one outside member. Students are encouraged to publish the research work in refereed journals in order to obtain feedback from the research community and to develop a publication track record prior to graduation. They must present and defend the novelty of the dissertation at a final examination.

The qualifying and comprehensive examinations may each be repeated only once. The final examination may not be repeated, except with approval of the graduate faculty involved and the dean of the Graduate Division.

Advising

Upon admission, the department chair meets with each incoming student at a preliminary conference to discuss the program requirements and determine any pre-program deficiencies. The student identifies a major area of study, and selects an academic advisor from the departmental faculty. The department chair serves as the advisor to the students without an undergraduate engineering degree until they satisfy the pre-program requirements and select academic advisors from their areas of study. The academic advisors review the coursework of the students every semester until they progress to the research stage and are advised by their MS or PhD committees. The research advisors are also tasked to monitor the students for three years after their graduation. All the information is recorded in the student progress form, which provides data for subsequent program assessments.

Oceanography

Marine Science 205
1000 Pope Road
Honolulu, HI 96822
Tel: (808) 956-7633
Fax: (808) 956-9225
E-mail: ocean@soest.hawaii.edu
Web: www.soest.hawaii.edu/oceanography

Faculty

F. J. Sansone, PhD (Chair)—biogeochemistry of permeable (sandy) sediments, coastal processes, trace-gas biogeochemistry, hydrothermal geochemistry
M. J. Church, PhD—microbial oceanography, biogeochemistry, plankton biomass and production, ocean ecosystem dynamics
A. D. Clarke, PhD—sea-salt and marine aerosols, global pollution, atmospheric optics, aerosol-cloud studies, biogeochemical cycles
J. P. Cowen, PhD—marine microbial geochemistry, biogeochemistry, deep subseafloor biosphere, deep-sea hydrothermal processes, water quality issues particle dynamics
E. H. DeCarlo, PhD—aquatic geochemistry, environmental geochemistry, ocean observation systems, trace element geochemistry
J. Drazen, PhD—physiological ecology of deep-sea fishes, energetic strategies and trophodynamics, mesopelagic community dynamics
E. Firing, PhD—equatorial circulation, general circulation, physical oceanographic technology
P. J. Flament, PhD—dynamics of the surface layer, mesoscale structures, remote sensing, water-types formation, subduction and thermocline ventilation, mixing processes
B. T. Glazer, PhD—biogeochemical cycling, redox transition zone geomicrobiology, in situ electrochemical techniques
B. J. Huebert, PhD—atmospheric chemistry, aerosols, air-sea gas exchange, marine aerosol production, growth, cloud interactions
M. Huntley, PhD—bio-renewable fuels, life histories, ecology, physiology and cultivation of zooplankton
Z. Johnson, PhD—microbial ecology and biogeochemistry, photosynthesis and primary production, molecular diversity
D. M. Karl, PhD—microbiological oceanography, oceanic productivity, biogeochemical fluxes
C. Kelley, PhD—deepwater habitats, ecology and fisheries, seafloor mapping and GIS
R. C. Kloosterziel, PhD—geophysical fluid dynamics, hydrodynamic, hydromagnetic stability
Y. H. Li, PhD—marine geochemistry, marine pollution studies
R. Lukas, PhD—equatorial circulation, air-sea interaction, climate variability, and ocean observing systems
D. S. Luther, PhD—oceanic waves from infragravity to Rossby, mesoscale variability, eddy-mean flow interaction, topographically-catalyzed mixing, instrumentation
L. Magaard, Dr. rer. nat.—ocean waves, oceanic turbulence, oceanography of Hawaiian waters, climate and society
A. Malahoff, PhD, DSc—geological and geophysical oceanography, submarine volcanism, hydrothermal, geothermal, and mineral formation processes, structure of the oceanic crust
J. P. McCreary, Jr., PhD—equatorial ocean dynamics, coupled ocean-atmospheric modeling, general ocean circulation, coastal ocean dynamics, ecosystem modeling
M. McManus PhD—coastal circulation, mesoscale processes, physical-biological interactions in the ocean
G. McMurtry, PhD—geochemistry of marine deposits, seafloor venting processes, chemical volcanology, stable and radioisotope geochemistry, geochronology, in situ instrumentation development
C. Measures, PhD—global distributions of trace elements, quantifying atmospheric deposition to the surface ocean, trace element biogeochemistry, fractional solubility of atmospheric aerosols
M. A. Merrifield, PhD—physical oceanography, waves, currents, sea level variability
M. J. Molt, PhD—submarine hydrothermal processes, geochemical cycles, sea-water-sea-floor chemical interaction
P. Muller, Dr. rer. nat.—theoretical physical oceanography, foundations of complex system theories
B. Qiu, PhD—large-scale ocean circulation, ocean atmosphere interaction, satellite observations and numerical modeling of ocean circulation
K. Richards, PhD—ocean mixing processes, circulation and dynamics, ocean-atmosphere interaction, ecosystem modeling
K. Runte, PhD—biogeochemistry of phosphorus and associated bioactive elements in freshwater and marine aqueous and sedimentary systems, sediment diagenesis, organic matter reactivity and mineral authigenesis, effect of redox chemistry on element cycling, global biogeochemical cycles
N. Schneider, PhD—decadal climate variability, tropical air-sea interaction, coupled modeling

* Graduate Faculty
*J. E. Schoonmaker, PhD—sedimentary geochemistry and diagenesis, interpretation of paleoenvironment and paleoclimate sedimentary records
*K. Selph, PhD—biological oceanography, microbial ecology, protistian grazer feeding dynamics, phytoplankton distributions, use of flow cytometry in ecological research
*C. R. Smith, PhD—benthic ecology, deep-sea biology, sediment biogeochemistry, climate-change effects on Antarctic ecosystems, marine conservation
*G. Steward, PhD—marine bacteria and viruses, microbial genomics, molecular ecology and biogeochemical cycles
*A. Timmermann, PhD—ENSO theory, Paleo-climate change, biogeochemical modeling, nonlinear dynamics, dynamics of the thermohaline circulation, coral bleaching and anthropogenic climate change
*G. Wang, PhD—ecology of marine eukaryotic microbes, ecology and biogeochemistry of invertebrate (sponges) symbionts, marine ecogenomics, function and diversity of marine geomicrobes, marine biotechnology, and bio-renewable fuel production
*R. E. Zeebe, PhD—global biogeochemical cycles, carbon dioxide system in seawater and interrelations with marine plankton, paleoceanography, stable isotope geochemistry

Cooperating Graduate Faculty
*M. J. Atkinson, PhD—coral reef biogeochemistry, coral physiology, coral reef airborne and satellite remote sensing, development and testing of coastal sensor technologies
W. L. Au, PhD—bioacoustics and ecological acoustics of the marine environment
J. M. Becker, PhD—geophysical fluid dynamics, coastal processes, general ocean circulation
*R. Bidigare, PhD—bio-optical oceanography, nutrient cycling, phytoplankton pigment biochemistry, intermediary metabolism of marine plankton
M. Cooney, PhD—isoalci of antifouling compounds from marine algae, bioreactor design, and continuous cultivation of marine bacteria and copepods
W. Dudley, PhD—marine geology
J. L. Falter, PhD—coral reef biogeochemistry, near-shore hydrodynamics
E. Gaidos, PhD—molecular evolutionary biology and genomics, microbiology of reefs and rainforests, global change and Earth history
R. Gates, PhD—regulation and de-stabilization of coral/dinoflagellate symbioses, evolution and development of animal sensory systems
*E. J. Hochberg, PhD—coral reef ecology, remote sensing, and bio-optics
G. Pawlak, PhD—coastal and estuarine mixing processes, stratified flows, sediment transport and laboratory experimental methods
B. Popp, PhD—stable isotope biogeochemistry, marine organic geochemistry, isotopic biogeochemistry of individual biomarkers and gases
M. Rappe, PhD—phylogenetic, genomic, and metabolic diversity of microorganisms including marine plankton, coral reef, and deep subsurface ecosystems
J. R. Sibert, PhD—ecology, biology of pelagic fisheries
R. Toonen, PhD—larval ecology, coral reef biology, evolution, phylogeography and conservation genetics of marine invertebrates
J. C. Wilshire, PhD—geology and geochemistry of marine mineral deposits, marine mining and processing, minerals policy issues, research-submersible technology

Affiliate Graduate Faculty
R. Brainard, PhD—tropical reef-ecosystem integration, with a particular emphasis on the role of ocean variability on ecosystem health
P. Falkowski, PhD—phytoplankton evolution and ecology, photosynthesis, coral biology, and biogeochemical cycles
M. Landry, PhD—zooplankton ecology, population dynamics, marine ecosystem modeling
E. Laws, PhD—phytoplankton ecology, aquatic pollution, aquaculture
F. Mitsudera, PhD—dynamics of western boundary currents and jets, marginal seas, geostrophic turbulence and eddies
D. W. Moore, PhD—geophysical fluid dynamics, equatorial oceanography
P. M. Poulain, PM—ocean circulation, mesoscale eddies, circulation and water mass properties in semi-enclosed seas, strait and coastal dynamics, remote sensing (coastal radars and satellites) and Lagrangian measurement techniques

Emeriti Graduate Faculty
*R. Grigg, PhD—coral reef ecology, paleoceanography, fisheries management
*F. Mackenzie, PhD—geochemistry, sedimentology, greenhouse effect, biogeochemical cycles and global environmental change
S. Smith, PhD—C-N-P mass balance in marine systems, CO2 biogeochemistry, coastal ecology
K. Wyrtki, Dr. rer. nat.—ocean circulation, ocean- atmosphere interaction, climate changes
R. Young, PhD—ecology and systematics of cephalopod mollusks

Degrees Offered: MS in oceanography, PhD in oceanography

The Academic Program

Oceanography (OCN) is the study of the physics, chemistry, and geology of the ocean and the ecology of organisms that live within the sea. Physical oceanography is concerned with ocean circulation, waves, tides, upwelling, air-sea interactions, and the effect of the oceans on climate. Chemical oceanographers study the distribution of dissolved substances in the ocean and the mechanisms, both natural and anthropogenic, that control their form and abundance. Geological oceanography includes the study of sea-floor spreading, submarine vulcanism, beach formation, deep-sea mineral resources, sediments, and paleoceanography. Biological oceanographers study the interactions of marine organisms with one another and the environment; topics include coral reef ecology, marine fisheries, hydrothermal-vent communities, plankton ecology, and near-shore and deep-sea benthic communities.

Because Hawai‘i is located near the middle of the largest ocean on Earth, oceanography has a special significance for the state and UH. At UH Mānoa, the oceanography facilities are among the best in the U.S. and include three ocean-going research vessels and two research submarines. Biological studies are facilitated by the presence of the Hawai‘i Institute of Marine Biology on Coconut Island in Kāne‘ohe Bay.
Computing facilities are based on a growing network of nearly 300 Sun workstations, Macintosh, and personal computers. Precision instruments include mass spectrometers, gas and liquid chromatographs, liquid scintillation counters, a CHN analyzer, a flow cytometer, and a series of atomic spectroscopy-based instruments. The world-class faculty is actively involved in both teaching and research. UH Mānoa ranks fifth among universities in the nation in terms of National Science Foundation research funding for oceanographic research. The location, the facilities, and the faculty all make UH Mānoa an ideal place to study oceanography.

About 40 percent of marine scientists are employed by the U.S. government, especially by the defense, commerce, and interior departments. Another 40 percent teach and do research at academic institutions. About 20 percent are employed by industry.

The MS and PhD in oceanography are recognized WICHE regional graduate programs. Residents of Alaska, Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, North Dakota, Oregon, Utah, Washington, and Wyoming are eligible, upon admission, to enroll at Hawai‘i-resident tuition rates.

Advising
Each student admitted to the oceanography department is assigned an advisory committee by the department chair. The committee initially consists of three graduate faculty members from at least two of the subdisciplines of oceanography. When formed, the student’s MS or PhD committee becomes the student’s advisory committee. A student must meet with his or her advisory committee at least twice per year. A written report summarizing each meeting must be signed by the student and his or her committee and a copy placed in the student’s file.

Graduate Study
The department offers master’s and doctoral programs with areas of specializations in biological and physical oceanography, and marine geology and geochemistry.

Oceanography courses listed in this Catalog may be taken for credit in the degree program. Additional courses may be selected from such fields as botany, chemistry, engineering, geology, mathematics, meteorology, physics, and zoology.

Admission Requirements
Applicants must have intensive, rigorous training in one of the basic sciences or engineering. Regardless of major, an applicant must have completed mathematical training, including calculus through first-order ordinary differential equations (equivalent to Calculus IV at UH Mānoa). An applicant must also have a year each of physics and chemistry. The well-prepared student will also have covered classical thermodynamics and applied differential equations and will have had a semester each of biology and geology. GRE test scores (General Test only) are required. Interested students should write to the department chair for a brochure and further information. For U.S. applicants, the deadline for application for admission is January 15 for the fall semester and September 1 for the spring semester. For foreign applicants, the corresponding deadlines are January 15 and August 1.

Major Requirements
All students pursuing a degree program must take OCN 620, 622, and 623. For non-biological students, the sequence is completed by taking OCN 621. Biological students complete the sequence by taking OCN 626, 627, and 628. Marine geology and geochemistry students must take CHEM 351 (if they have not already successfully completed a college-level course in physical chemistry). Students may be admitted to the MS program upon successful completion of the appropriate sequence. To be admitted to the PhD program, a student must receive a positive recommendation from a PhD-qualifying committee.

Degree Requirements
Both the MS and PhD programs require a minimum of 36 credit hours, including 24 credit hours of course work. The 24 semester hours of course work must be in courses numbered 600 or above (excluding OCN 699 and 700 and seminar courses). At least 12 of those semester hours must consist of courses taken from three of the following groups: biological oceanography, geological oceanography, chemical oceanography, physical oceanography, mathematical methods and statistics, and meteorology. MS students are required to take six credits of OCN 699 (Directed Research) and six credits of OCN 700 (Thesis Research).

Prior to completion of their graduate degree, biological oceanography students must have satisfactorily completed either an undergraduate or graduate course in statistics. Students specializing in marine geology and geochemistry must take at least one, and preferably more, advanced biogeochemistry course. All students must complete a seminar requirement, demonstrate computer competency, and accumulate at least 30 days of field experience. PhD candidates must also pass a comprehensive examination. All students must pass a final oral examination in defense of their thesis/dissertation.