Civil and Environmental Engineering Mechanical Engineering |
Mechanical EngineeringHolmes 302 Faculty*Graduate Faculty *M. Kobayashi, PhD (Chair)—computational fluid dynamics, aeroacoustics, dynamical systems, topology optimization Adjunct FacultyJ. Yuh, PhD—control, robotics, design Cooperating Graduate FacultyM. Dubarry, PPhD—battery testing, modeling and simulation; grid scale Li-ion energy storage systems, vehicle-to-grid strategies, and testing of emerging battery technologies Degrees Offered: BS in mechanical engineering, MS in mechanical engineering, PhD in mechanical engineering Mission StatementTo provide quality education, research, and service to our graduates and prepare them for successful engineering and professional careers and leadership roles with lifelong learning and ethical conduct that will lead them to be engaged responsible citizens, engineers, and professionals in their community and the world. Objectives
The Academic ProgramMechanical engineering (ME) is concerned with the design of all types of machines, conversion of energy from one form to another, instrumentation and control of all types of physical and chemical processes, the manufacturing and utilization of engineering materials, and control of human and machine environments. Mechanical engineers conceive, plan, design, and direct the manufacture, distribution, and operation of a wide variety of devices, machines, instruments, materials, and systems used for energy conversion, heat and mass transfer, biomedical applications, environmental control, control of human and machine environments, physical and chemical process control, materials processing, transportation, manufacture of consumer products, materials handling, and measurements. Mechanical engineers also employ Computer Aided Design (CAD), Computer Aided Manufacturing (CAM), Computer Aided Testing (CAT), Computational Fluid Dynamics (CFD), computer modeling and simulations, novel materials, robotics, and mechatronics (integration of computers with electromechanical systems) in their day-to-day activities. Mechanical engineers find opportunities for employment in every branch of industry and in a variety of government agencies. Work may involve research, development, design, analysis, manufacture, testing, marketing, or management. Undergraduate StudyOutcomes
Professional Components
Bachelor’s DegreeThe BS degree requires completion of at least 120 credit hours of course work. The curriculum consists of a group of required courses chosen to provide students with the basic tools for the professional practice of mechanical engineering and to assist students in developing a sense of responsibility as professionals. The objectives of the lower division curriculum are to build a foundation in the basic sciences and mathematics, provide an introduction to engineering design and professional ethics, develop communications and computer programming skills, and acquire an appreciation for the humanities and social sciences. The objectives of the upper division program are to provide a sound foundation in the engineering sciences; build on that foundation for applications in the areas of energy conversion, mechanical systems and control, experimentation, and manufacturing; and encourage creativity culminating in a capstone design experience. To provide sufficient flexibility, technical elective courses enable students to acquire additional competence in areas compatible with their career objectives. All electives are subject to the approval of an advisor. College RequirementsStudents must complete the college requirement courses for engineering (see “Undergraduate Programs” within the College of Engineering). Departmental RequirementsStudents must complete the following course work:
For information on a Bachelor Degree Program Sheet, go to www.manoa.hawaii.edu/ovcaa/programsheets/. Graduate StudyOutcomes
The Department of Mechanical Engineering offers graduate programs leading to MS and PhD degrees in Mechanical Engineering with areas of concentration in Thermal and Fluid Sciences (heat and mass transfer, thermodynamics, biotechnology, alternative energy conversions, sustainability, boiling and two-phase flow, combustion, multidisciplinary design and analysis optimization, and high-performance computing); Mechanics, Systems, and Controls (robotics, mechanical design, mechatronics, control systems, dynamical systems, space and ocean science and exploration, biomedical engineering, rehabilitation engineering, and renewable energy systems); and Materials and Manufacturing (nanotechnology, composite and smart structures, electrochemistry and corrosion, precision machining, and joining of dissimilar materials). For qualified graduate students, teaching assistantships, research assistantships, and scholarships are available. Master’s DegreeApplicants for admission to the MS program must have completed a BS degree in engineering or its equivalent from a reputable institution. RequirementsStudents are required to follow the Plan A (thesis) program. However, under special circumstances, a petition to follow Plan B (non-thesis) may be granted by the graduate faculty. A minimum of 30 credit hours is required for graduation, including 1 credit hour for seminar. Plan A students must take 8 credit hours for thesis, 12 credit hours in the ME 600 course series, and 9 credit hours in technical electives. Technical elective courses must be at the 400 level or above, selected from engineering, mathematics, or physical sciences approved by the student’s thesis committee. For graduation, each candidate must present an acceptable thesis (research report for Plan B) and must pass a final oral examination based on the thesis for Plan A or on the course work and the research report for Plan B. Doctoral DegreeApplicants for admission to the PhD program must have completed the requirements for the MS in engineering, science, or related areas from a reputable institution. A direct PhD degree option is also available for applicants with a BS degree in engineering, science, or related areas. RequirementsIntended candidates for the PhD are required to pass an oral qualifying examination within the prescribed period of time, by taking 4 credits of ME 699. The purpose of the qualifying examination is to judge students’ ability to pursue research. After passing the qualifying examination, the student will be admitted to the status of candidate in the PhD program. At the discretion of the qualifying examination committee, students who fail the qualifying examination will be dropped from the program. Students must satisfactorily complete a minimum of 50 credit hours in course work beyond the BS level. They are required to select a major within the following three areas of concentration: materials/manufacturing, mechanics/design/systems/controls, or thermal/fluid sciences. Students who enter the program with a MS degree may, with the approval of the graduate chair, be credited with up to 30 credits for equivalent work to be counted toward their PhD-credit-hour requirement. Up to 8 of these 30 credit hours may be assigned for prior MS thesis work. Students who possess a second MS degree may be credited with up to 9 additional credit hours for equivalent work. Up to 9 credit hours may be assigned for course work taken as an unclassified graduate student. All courses shall be selected by students but must be approved in writing by their committees. These courses must form an integrated education plan. A minimum of 2 credit hours in ME 691 or its equivalent must be included in every PhD program. Students who desire teaching experience may, with the approval of the PhD committee chair, request that the department chair assign them teaching responsibility for a particular undergraduate course. The department chair will determine whether students are qualified to teach the course in question, and, if they are deemed qualified, they may be given the teaching assignment. Students who teach a course or courses will be assigned a maximum of 3 credit hours toward their PhD course work requirements. For direct PhD students with a BS degree, instead of 8 thesis credits, 4 credits should be taken as ME 799 (Directed Instruction) and the other 4 credits should be taken as ME 699 while taking the comprehensive examination. Comprehensive ExaminationPhD candidates must pass an oral comprehensive examination to demonstrate their comprehension of the chosen areas of study relevant to their dissertation proposals and basic knowledge of courses taken at the graduate level. Students who fail the comprehensive examination may, at the discretion of the graduate faculty concerned, repeat it once after at least six months. Students who fail the examination a second time will be dropped from the program. Final ExaminationStudents are required to complete a satisfactory doctoral dissertation and to pass an oral final examination based primarily upon the dissertation. The final examination will be administered by the respective PhD committee. A student passes the final examination upon the favorable recommendation of a majority of the PhD committee. ME Courses
|
Home About UH Academic Calendar Courses Undergraduate Education Graduate Education Degrees, Minors & Certificates Colleges, Schools & Academic Units Please note: This Catalog was prepared to provide information and does not constitute a contract. The University reserves the right to change or delete, supplement or otherwise amend at any time and without prior notice the information, requirements and policies contained in this Catalog. |
Catalog Coordinator, Manoa Catalog Office, 2600 Campus Road, QLC 102, Honolulu, HI 96822 :: Web Design by Christine Galiza, Modified by Michelle Saoit :: |